Information retrieval systems are vital for disease prediction, but traditional methods like TF-IDF struggle with word meanings and produce long, complex vectors. This research uses Large Language Models (LLMs) and follows the CRISP-DM methodology to improve accuracy. Using health forum discussions labeled with specific diseases, we split the data into queries and a corpus. Semantic similarity is used to retrieve the most relevant text from the corpus. After preprocessing, we compare LLMs and TF-IDF, with LLMs achieving an accuracy of 0.911 (Top-K=30), outperforming TF-IDF. LLMs excel by creating shorter, meaningful vectors that preserve context, enabling precise semantic matching. These results demonstrate LLMs' potential to enhance healthcare information retrieval, offering more accurate and context-aware solutions. This research highlights how advanced AI can overcome traditional methods' limitations, opening new possibilities for medical informatics.
Copyrights © 2025