Journal of Electrical Engineering and Computer (JEECOM)
Vol 7, No 1 (2025)

Corn Leaf Disease Classification Optimization Using Resnet50 Architecture Utilizing Bayesian Optimization

Abdillah, Yahya Auliya (Unknown)
Kusrini, Kusrini (Unknown)



Article Info

Publish Date
10 Apr 2025

Abstract

This research aims to optimize the classification of diseases on corn leaves using Convolutional Neural Network (CNN) architecture, ResNet50, combined with hyperparameter optimization techniques using Bayesian Optimization. The dataset used comes from Kaggle, consisting of four classes of corn leaf diseases, namely corn leaf spot, leaf rust, corn leaf blight, and healthy corn leaves. Data pre-processing was done to balance the amount of data between classes and reduce the risk of overfitting. This study tested various scenarios, including the use of the original dataset and a pre-processed dataset. The experimental results show that the use of Bayesian Optimization in hyperparameter search gives better results than manual parameter setting. The scenario with hyperparameter optimization using Bayesian Optimization technique on the pre-processed dataset shows an increase in accuracy by 5% (87.79%) compared to the scenario without optimization (82.82%). This research concludes that hyperparameter optimization techniques and proper data pre-processing can improve the performance of CNN models in corn plant disease classification, providing the potential to assist farmers in detecting diseases earlier and reducing the economic losses incurred.

Copyrights © 2025






Journal Info

Abbrev

jeecom

Publisher

Subject

Control & Systems Engineering Electrical & Electronics Engineering Energy

Description

Journal of Electrical Engineering and Computer (JEECOM) is published by Engineering Faculty of Nurul Jadid University, Probolinggo, East Java, Indonesia. This journal encompasses research articles, original research report, : 1) Power Systems, 2) Signal, System, and Electronics, 3) Communication ...