The global prevalence of type 2 diabetes has escalated in recent decades, prompting an urgent need for effective prevention strategies. Physical activity has emerged as a significant modifiable risk factor for mitigating diabetes risk, yet the precise causal relationship remains a subject of debate, particularly in observational studies. This research leverages advanced causal inference methods to rigorously estimate the effect of physical activity on the risk of developing type 2 diabetes. By employing Propensity Score Matching (PSM), we address confounding biases inherent in observational data, ensuring more reliable estimates of treatment effects. Additionally, we integrate machine learning techniques, including causal forests, to explore heterogeneous treatment effects (HTEs) across different population subgroups. Our findings highlight that the benefits of physical activity in reducing diabetes risk are not uniform but are more pronounced among individuals with higher body mass index (BMI), further underlining the necessity of tailored interventions. The application of advanced causal inference models allows us to account for confounders such as diet, socioeconomic status, and pre-existing health conditions, offering a more comprehensive understanding of the relationship between physical activity and diabetes prevention. This study contributes to the growing literature by demonstrating that physical activity significantly reduces diabetes risk, with particular benefits for high-risk subgroups. Our findings provide evidence for public health policies that emphasize physical activity as a cornerstone of diabetes prevention, promoting individualized approaches to intervention.
Copyrights © 2025