Kriminalitas atau tindak kejahatan adalah setiap perbuatan yang melanggar hukum pidana. Informasi terkait banyaknya tindak kejahatan yang terjadi sangat dibutuhkan oleh masyarakat dan penegak hukum. Penelitian ini bertujuan untuk mengelompokkan daerah rawan kriminalitas pada provinsi di Indonesia menggunakan algoritma K-Medoids dengan optimasi Gap Statistics. Algoritma K-Medoids merupakan metode analisis cluster dengan menggunakan perwakilan dari objek sebagai pusat cluster. Penentuan jumlah cluster teraik pada metode ini masih belum memiliki dasar teori yang jelas, sehingga diperlukan pendekatan untuk mengidentifikasi jumlah cluster optimal. Gap statistics merupakan salah satu pendekatan terbaik untuk menentukan jumlah cluster optimal dengan membangkitkan data acak dalam penentuan jumlah kelompok optimum. Data yang digunakan merupakan data sekunder yang didapatkan dari publikasi Badan Pusat Statistik yaitu Statistik Kriminal 2023 yang berisi data jumlah kriminalitas menurut jenis kejahatan dan kepolisian daerah tahun 2022. Penelitian ini berfokus untuk membentuk kelompok yang berisi provinsi dengan jarak terdekat berdasarkan karakteristik dari kriminalitas menggunakan analisis cluster. Berdasarkan analisis yang telah dilakukan, jumlah cluster optimal yang terbentuk berjumlah empat cluster dengan nilai gap statistics yang diperoleh sebesar 0,65. Cluster 1 dikategorikan sebagai daerah sangat rawan kriminalitas yang terdiri dari tiga provinsi, Cluster 2 dikategorikan sebagai daerah rawan kriminalitas yang terdiri dari dua provinsi, Cluster 3 dikategorikan sebagai daerah cukup rawan kriminalitas yang terdiri dari tujuh provinsi, dan Cluster 4 dikategorikan sebagai daerah tidak rawan kriminalitas yang terdiri dari 22 provinsi. Kata Kunci : kriminalitas, analisis cluster, cluster optimal, outlier.
Copyrights © 2025