Dengan meningkatnya kebutuhan akan diagnosis yang cepat dan akurat dalam bidang medis, model deteksi berbasis deep learning menawarkan solusi yang menjanjikan. Penelitian ini bertujuan untuk mengembangkan model deteksi tumor otak pada citra Magnetic Resonance Imaging (MRI) menggunakan arsitektur YOLOv10. YOLOv10 dipilih karena kemampuannya dalam melakukan deteksi objek secara real-time dengan tingkat akurasi yang tinggi. Dalam penelitian ini, dataset MRI otak yang terdiri dari 1003 gambar digunakan untuk melatih model. Proses pelatihan dilakukan dengan menggunakan berbagai jumlah epoch untuk mengidentifikasi parameter yang optimal. Hasil menunjukkan bahwa model YOLOv10 mampu mendeteksi tumor otak dengan tingkat presisi yang tinggi, dengan metrics precision sebesar 97,88%, recall 95,24%, dan mAP50 sebesar 95,84%.pada epoch 200. Model ini diharapkan dapat digunakan sebagai alat bantu bagi para profesional medis dalam mendeteksi tumor otak secara lebih efisien dan efektif, serta memberikan kontribusi signifikan dalam bidang diagnosa penyakit menggunakan teknologi berbasis kecerdasan buatan.
Copyrights © 2024