Journal of Electronics, Electromedical Engineering, and Medical Informatics
Vol 7 No 2 (2025): April

Explainable Artificial Intelligence based Deep Learning for Retinal Disease Detection

Sureja, Nitesh (Unknown)
Parikh, Vruti (Unknown)
Rathod, Ajaysinh (Unknown)
Patel, Priya (Unknown)
Patel, Hemant (Unknown)
Sureja, Heli (Unknown)



Article Info

Publish Date
13 Apr 2025

Abstract

This research focuses on the automated identification of retinal diseases. To address this challenge, an artificial intelligence-based approach developed utilizing five deep learning models namely Xception, InceptionV4, EfficientNet-B4, SqueezeNet, and ResNet-264. The model leverages transfer learning to enhance its performance. It is trained on a dataset of optical coherence tomography (OCT) images to classify retinal conditions into four categories: (1) diabetic macular edema, (2) choroidal neovascularization, (3) drusen, and (4) normal. The training dataset, sourced from publicly available repositories, comprises 1,08,312 OCT retinal images covering all four categories. The proposed models achieved good results. InceptionV4 outperformed other models across multiple metrics, achieving the highest accuracy (99.50%), precision (100%), recall (100%), AUC (100%), and F1 score (100%). It surpassed SqueezeNet (accuracy: 98.00%, precision: 98.00%, recall: 98.00%), EfficientNet-B4 (accuracy: 98.50%, precision: 98.50%, recall: 98.50%), Xception (accuracy: 78.25%, precision: 80.36%, recall: 77.75%, F1 score: 99.50%), and ResNet-264 (accuracy: 87.75%, precision: 87.94%, recall: 87.50%, F1 score: 87.98%). The results highlight the effectiveness of deep learning models combined with transfer learning in achieving accurate and efficient retinal disease detection. Future research could focus on expanding the dataset and exploring hybrid architectures to enhance classification accuracy and improve generalization across various retinal conditions

Copyrights © 2025






Journal Info

Abbrev

jeeemi

Publisher

Subject

Computer Science & IT Control & Systems Engineering Electrical & Electronics Engineering Engineering

Description

The Journal of Electronics, Electromedical Engineering, and Medical Informatics (JEEEMI) is a peer-reviewed open-access journal. The journal invites scientists and engineers throughout the world to exchange and disseminate theoretical and practice-oriented topics which covers three (3) majors areas ...