Journal of Electronics, Electromedical Engineering, and Medical Informatics
Vol 7 No 2 (2025): April

A Novel Deep Learning Framework for Enhanced Glaucoma Detection Using Attention-Gated U-Net, Deep Wavelet Scattering, and Vision Transformers

V, Krishnamoorthy (Unknown)
S, Sivanantham (Unknown)
V, Akshaya (Unknown)
S, Nivedha (Unknown)
Depuru, Sivakumar (Unknown)
M, Manikandan (Unknown)



Article Info

Publish Date
17 Apr 2025

Abstract

Globally, Glaucoma is a major cause of permanent blindness, and maintaining eyesight depends on early detection. Here, a brand-new deep-learning system for glaucoma prediction. In this work, we offer a novel deep-learning approach for enhanced glaucoma prediction that uses a denoising generative adversarial network for preprocessing the input image is provided, later the segmentation is carried out by Attention-Gated U-Net with Dilated Convolutions to segment the optic cup and optic disc. Feature Extraction Using a Deep Wavelet Scattering Network and finally the glaucoma classification is carried out by the Vision Transformers. An attention-gated U-Net with dilated convolutions for segmentation, which improves the accuracy of optic disc and cup boundaries by 7% compared to conventional U-Net methods is introduced. A Deep Wavelet Scattering Network (DWSN) for feature extraction that achieves a 5% improvement in feature discrimination over conventional CNNs by capturing multiscale texture and structural information is suggested. Lastly, ViT, which is based on transfer learning, is used for classification; it has a 94.6% accuracy rate, a 93.8% sensitivity rate, and a 95.2% specificity rate. The suggested approach outperformed CNN-based models by improving by about 4% on all criteria. The system achieved an F1 score of 0.95 and an AUC (Area Under Curve) of 0.96 when tested on publicly accessible glaucoma datasets. Multi-stage deep-learning processing for glaucoma prediction by integrating a denoising generative adversarial network for image preprocessing, Attention-Gated U-Net with Dilated Convolutions for exact optic cup and disc segmentation, deep wavelet scattering for feature extraction, and Vision Transformers for glaucoma classification.

Copyrights © 2025






Journal Info

Abbrev

jeeemi

Publisher

Subject

Computer Science & IT Control & Systems Engineering Electrical & Electronics Engineering Engineering

Description

The Journal of Electronics, Electromedical Engineering, and Medical Informatics (JEEEMI) is a peer-reviewed open-access journal. The journal invites scientists and engineers throughout the world to exchange and disseminate theoretical and practice-oriented topics which covers three (3) majors areas ...