Engineering, Mathematics and Computer Science Journal (EMACS)
Vol. 7 No. 1 (2025): EMACS

Classifying Viral Twitter with Transformer Models and Multi-Layer Perceptron

Tedjasulaksana, Jeffrey Junior (Unknown)
Gunawan, Alexander Agung Santoso (Unknown)



Article Info

Publish Date
31 Jan 2025

Abstract

The classification of virality levels in Indonesian tweets is explored in this research using advanced natural language processing techniques and machine learning algorithms. Transformer models such as RoBERTa for sentiment analysis and XLNet for text embedding, alongside Multi-Layer Perceptron (MLP) classifiers, are leveraged to address the challenge of predicting tweet virality. Emotion features are incorporated, and cost-sensitive methods for handling class imbalance are implemented, resulting in robust performance demonstrated by our model. Intriguing correlations between tweet sentiment, emotion distribution, and virality levels are uncovered through sentiment analysis and emotion detection. The efficacy of XLNet in capturing contextual nuances, outperforming BERTweet, is highlighted by our findings. Furthermore, the integration of emotion features and cost-sensitive methods enhances the model's predictive accuracy, offering valuable insights for marketers and businesses seeking to optimize their social media strategies. The proposed model achieves an accuracy of 95% and an F1-Score of 59%.

Copyrights © 2025






Journal Info

Abbrev

EMACS

Publisher

Subject

Civil Engineering, Building, Construction & Architecture Computer Science & IT Engineering Industrial & Manufacturing Engineering Mathematics

Description

Engineering, MAthematics and Computer Science (EMACS) Journal invites academicians and professionals to write their ideas, concepts, new theories, or science development in the field of Information Systems, Architecture, Civil Engineering, Computer Engineering, Industrial Engineering, Food ...