Bulletin of Chemical Reaction Engineering & Catalysis
2025: BCREC Volume 20 Issue 2 Year 2025 (August 2025)

S-scheme g-C3N4/PVA Heterojunction with Enhanced Photocatalytic Reduction of Aqueous Cr(VI) and Mechanism

Guo, Tianhong (Unknown)
Jiang, Yingxing (Unknown)
Luo, Yuanyuan (Unknown)
Liang, Xianhui (Unknown)
Zhao, Xinshan (Unknown)
Li, Jing (Unknown)



Article Info

Publish Date
30 Aug 2025

Abstract

Bulk g-C3N4 was synthesized using melamine as a precursor through thermal polymerization followed by high-temperature quenching. Subsequently, a g-C3N4/PVA heterojunction featuring evenly dispersed PVA on its surface was fabricated via in-situ hydrothermal synthesis. The impact of hydrothermal temperature and PVA concentration on the light absorption, bandgap energy, specific surface area, and charge carrier transport characteristics of g-C3N4/PVA were explored. Experimental findings indicate that PVA modification reduces nitrogen-vacancy defects in the g-C3N4/PVA heterojunction, thereby enhancing its visible-light photocatalytic activity compared to bulk g-C3N4. Specifically, g-C3N4/PVA-3 exhibits a 2.93-fold higher reaction rate for Cr(VI) photocatalytic reduction under visible light (0.017 min–1) than bulk g-C3N4 (0.0058 min–1), with a TOF of 0.0079 h–1. Electrochemical tests confirm that the enhanced activity arises from improved light-induced charge transfer and separation efficiency. Based on Mott-Schottky analysis and the identification of •OH and •O2– as reactive species, a mechanism for Cr(VI) reduction by S-scheme g-C3N4/PVA heterojunctions is proposed. This study presents an economically viable and efficient method for developing high-performance conjugated polymer-modified photocatalysts. Copyright © 2025 by Authors, Published by BCREC Publishing Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).

Copyrights © 2025






Journal Info

Abbrev

bcrec

Publisher

Subject

Chemical Engineering, Chemistry & Bioengineering Chemistry

Description

Bulletin of Chemical Reaction Engineering & Catalysis, a reputable international journal, provides a forum for publishing the novel technologies related to the catalyst, catalysis, chemical reactor, kinetics, and chemical reaction engineering. Scientific articles dealing with the following topics in ...