International Journal of Informatics and Communication Technology (IJ-ICT)
Vol 14, No 2: August 2025

Automated rice leaf disease detection using artificial intelligence deep learning

M. P., Suhaila (Unknown)
S., Hemalatha (Unknown)



Article Info

Publish Date
01 Aug 2025

Abstract

As one of the top five rice-producing countries, India relies heavily on rice for both economic management and food needs. To ensure healthy rice plant growth, early detection of diseases and timely treatment are essential. Since manual disease detection is time-consuming and labor-intensive, an automated approach is more practical. This work presents a deep neural network (DNN)-based artificial intelligence (AI) method for recognizing rice leaf diseases. The method detects three common diseases: leaf smut, bacterial leaf blight, and brown spot, as well as healthy images. The approach uses an AI-based attention network and semantic batch normalized DeepNet (AN-SBNDN) combined with a channel attention mechanism to improve disease detection accuracy. Experiments with rice leaf datasets and comparison with conventional networks like residual attention network (Res ATTEN) and dynamic speeded up robust features (DSURF) validate the effectiveness of the method. Key performance metrics include average accuracy, time, precision, and recall, achieved at 21%, 44%, 26%, and 31%, respectively.

Copyrights © 2025






Journal Info

Abbrev

IJICT

Publisher

Subject

Computer Science & IT

Description

International Journal of Informatics and Communication Technology (IJ-ICT) is a common platform for publishing quality research paper as well as other intellectual outputs. This Journal is published by Institute of Advanced Engineering and Science (IAES) whose aims is to promote the dissemination of ...