Jurnal Komputer Indonesia
Vol. 3 No. 2 (2024): Desember

Classification Of Brain Tumors Using The VGG19 Method

Syah, Maulidya Prastita (Unknown)
Kristanaya, Mirechelin (Unknown)
Nariswari, Naura Ulayya (Unknown)
Azzahra, Melinda Putri (Unknown)
Pratama, Alfan Rizaldy (Unknown)
Saputra, Wahyu S.J. (Unknown)



Article Info

Publish Date
31 Dec 2024

Abstract

Brain tumor is one of the diseases that has a high mortality rate and requires early detection to increase the chance of cure. In recent years, artificial intelligence-based methods, especially Deep Learning, have shown promising performance in brain tumor classification using Magnetic Resonance Imaging (MRI) images. This study applies the VGG19 architecture, one of the Convolutional Neural Network (CNN) models, to classify brain tumor types based on MRI images. The model is trained with data that has gone through augmentation and contrast enhancement processes to improve image quality before classification. The experimental results show that the VGG19 method is able to achieve high accuracy in brain tumor classification. These findings confirm the effectiveness of VGG19 in automatically detecting brain tumors and can be a supporting solution for medical personnel in performing early diagnosis.

Copyrights © 2024






Journal Info

Abbrev

JKI

Publisher

Subject

Computer Science & IT

Description

Jurnal Komputer Indonesia (JKI) diterbitkan oleh Universitas dehasen Bengkulu. JKI memuat naskah hasil-hasil penelitian di bidang Ilmu Komputer. JKI berkomitmen untuk memuat artikel berbahasa Indonesia yang berkualitas dan dapat menjadi rujukan utama para peneliti dalam bidang Ilmu Komputer. Ruang ...