Abstrak — Pendidikan, sebagai bagian penting dalamkehidupan manusia, senantiasa mengalami perkembanganseiring dengan adanya kemajuan ilmu pengetahuan danteknologi (IPTEK). Salah satu inovasi penting dalam pendidikanadalah e-learning, yang memungkinkan siswa belajar tanpaterikat ruang kelas. Namun, dengan semakin banyaknya soalkuis yang beragam topiknya, terutama dalam mata pelajaranIPA yang mencakup berbagai konsep ilmiah, pengelolaan soalsecara manual menjadi tidak efisien. Oleh karena itu,diperlukan sistem klasifikasi yang dapat mengorganisasi danmengelompokkan soal secara otomatis dan efisien, sehingga bisameningkatkan pemahaman siswa, khususnya pada matapelajaran IPA. Penelitian ini memiliki tujuan untukmengimplementasikan algoritma Support Vector Machinedalam proses klasifikasi soal multi-label pada mata pelajaranIPA tingkat SMP. Proses klasifikasi mencakup pembersihandata, case folding, tokenisasi, stopword removal, stemming, danpembobotan atau ekstraksi fitur teks menggunakan TF-IDF.Pemodelan menggunakan pendekatan problem transformationdengan metode label powerset untuk mengubah soal denganmulti-label menjadi bentuk multi-class sehingga bisa dilakukanklasifikasi biner oleh SVM. Evaluasi model dilakukanmenggunakan confusion matrix untuk menganalisis performaklasifikasi dan K-Fold Cross Validation untuk memastikankeakuratan dan generalisasi model. Hasil penelitianmenunjukkan bahwa SVM dapat diterapkan untuk klasifikasisoal multi-label dengan akurasi 67%, serta presisi, recall, danF1-score masing-masing sebesar 75%. Analisis confusion matrixmengungkapkan bahwa model memiliki beberapa kesalahanklasifikasi, mengindikasikan ruang untuk perbaikan lebihlanjut. Meskipun demikian, model SVM menunjukkan potensiyang baik. Penelitian ini juga mengidentifikasi beberapa areauntuk perbaikan, termasuk peningkatan kualitas data danpemilihan parameter model yang lebih optimal. Oleh karena itu,metode SVM layak dipertimbangkan dalam sistem pendidikanuntuk pengembangan bank soal dan sistem evaluasi berbasisteknologi, meskipun diperlukan perbaikan lebih lanjut pada model dan data. Kata kunci— bank soal, confusion matrix e-learning, klasifikasi multi-label, K-Fold Cross Validation, Support VectorMachine.
                        
                        
                        
                        
                            
                                Copyrights © 2025