JoDENS: Journal of Digital Ecosystem for Natural Sustainability
Vol 4 No 1 (2024): Juli 2024

Implementasi Support Vector Machine untuk Klasifikasi Kasus Monkeypox: Pendekatan Oversampling dan Undersampling untuk Mengatasi Ketidakseimbangan Kelas

Cindy (Unknown)
Sabatini, Tiffany (Unknown)
Itan, Vincent (Unknown)



Article Info

Publish Date
25 Jul 2024

Abstract

Monkeypox is an infectious disease caused by the monkeypox virus. This study applies the Support Vector Machine (SVM) method to classify monkeypox cases. Utilizing SVM aids in accurate diagnosis and prevention measures. Preprocessing involves Random Oversampling (ROS) and Random Undersampling (RUS) to address class imbalance in symptom datasets. SVM classification is based on systemic symptoms and clinical signs. Evaluation via Confusion Matrix assesses accuracy, sensitivity, specificity, and AUC, with average accuracy reaching 67.1% for imbalanced data and 36.5% for balanced data. The method outperforms conventional techniques, demonstrating its potential in monkeypox symptom pattern recognition. Results indicate higher accuracy in diagnosing monkeypox using SVM, despite class imbalances. This study contributes to understanding, predicting, and managing monkeypox outbreaks effectively.

Copyrights © 2024






Journal Info

Abbrev

jodens

Publisher

Subject

Computer Science & IT Decision Sciences, Operations Research & Management

Description

Jurnal ini mencakup seluruh konsep teoritis dan aplikasi informatika/komputasi dalam Membangun Ekosistem Digital untuk Kelestarian Alam (dunia), yang meliputi, namun tidak terbatas pada: Artificial Intelligence Big Data Bioinformatics Game Development Geographical Information Systems Image ...