Indonesian Journal of Statistics and Its Applications
Vol 3 No 3 (2019)

PEMODELAN STATISTICAL DOWNSCALING DENGAN PEUBAH DUMMY BERDASARKAN TEKNIK CLUSTER HIERARKI DAN NON- HIERARKI UNTUK PENDUGAAN CURAH HUJAN

Sitti Sahriman (Hasanuddin University, Indonesia)
Anisa Kalondeng (Hasanuddin University, Indonesia)
Vieri Koerniawan (Hasanuddin University, Indonesia)



Article Info

Publish Date
31 Oct 2019

Abstract

Statistical downscaling (SD) is a statistical technique used to predict local scale rainfall based on global atmospheric circulation. The global scale climate variable used is precipitation from GCM (Global Circulation Model). However, the precipitation data of GCM outputs have a large dimension, giving rise to multicollinearity in the data. This problem is handled by the Principal Component Regression (PCR) method. In addition, the SD models have heterogeneous error variances. The dummy variable is added to the PCR models to solve the problem. Hierarchical (k-means) and non-hierarchical cluster techniques (average linkage, median linkage, and ward linkage) are used in modeling to determine rainfall data groups. Furthermore, the group formed is the basis of the formation of dummy variables. This study aims to estimate local rainfall data in Pangkep district as a salt-producing area in South Sulawesi. There are 4 dummy variables based on the 5 groups formed. Dummy variables are able to improve predictions from the PCR models. R2 values of the PCR-dummy models (ranging from 89.89% to 95.58%) are relatively higher than the PCR models (ranging from 55.87% to 57.61%). This result is also consistent with the model validation stage. The PCR-dummy models based on non-hierarchical cluster techniques (k-means) are better than the PCR-dummy models based on cluster hierarchy techniques. In general, the best model is the PCR-dummy model of the non-hierarchical cluster technique (k-means ) and involves 4 main components.

Copyrights © 2019






Journal Info

Abbrev

ijsa

Publisher

Subject

Computer Science & IT Mathematics Other

Description

Indonesian Journal of Statistics and Its Applications (eISSN:2599-0802) (formerly named Forum Statistika dan Komputasi), established since 2017, publishes scientific papers in the area of statistical science and the applications. The published papers should be research papers with, but not limited ...