Indonesian Journal of Statistics and Its Applications
Vol 8 No 2 (2024)

Acne Severity Classification Study Using Convolutional Neural Network Algorithm with MobileNetV2 Architecture: Kajian Klasifikasi Tingkat Keparahan Jerawat Menggunakan Algoritma Convolutional Neural Network

Ramadhani, Faadiyah (Unknown)
Rahardiantoro, Septian (Unknown)
Masjkur, Mohammad (Unknown)



Article Info

Publish Date
31 Dec 2024

Abstract

Data classification is a key technique in machine learning that maps patterns and features of input data into a target class. Significant developments in data classification occur in deep learning with neural networks and Convolutional Neural Networks (CNN) that are able to extract image features automatically. CNN can classify the level of a condition based on image data, one of which is the severity of acne. Acne (acne vulgaris) is a common skin disease with varying severity. This study aims to apply the CNN MobileNetV2 model to classify acne severity based on acne input images. The data consists of 1457 acne images at 4 severity levels divided into 80% training data and 20% test data. MobileNetV2 was used as a feature extractor through transfer learning. Fine-tuning and classification were performed using fully connected layers with ReLU and softmax activation functions. The model was evaluated with a confusion matrix and classification report. The model with a combination of hyperparameter batch size 16 and a learning rate of 0.00001 was the best model that achieved 87.29% accuracy with 89% precision, 84% recall, and 86% F1 score for classifying acne severity.

Copyrights © 2024






Journal Info

Abbrev

ijsa

Publisher

Subject

Computer Science & IT Mathematics Other

Description

Indonesian Journal of Statistics and Its Applications (eISSN:2599-0802) (formerly named Forum Statistika dan Komputasi), established since 2017, publishes scientific papers in the area of statistical science and the applications. The published papers should be research papers with, but not limited ...