Equiva
Vol 1 No 2 (2023)

Penerapan Stochastic Gradient Descent Support Vector Regression pada Data Laju Pertumbuhan Produk Domestik Bruto di Indonesia

Arrazaq, Khamid Muhammad (Unknown)
Saputro, Dewi Retno Sari (Unknown)
Setiyowati, Ririn (Unknown)



Article Info

Publish Date
04 Dec 2023

Abstract

Economic growth is defined as an increase in a country's income as measured using gross domestic product (GDP) data. The GDP growth rate tends to experience an upward trend even though fluctuates in each time period. This fluctuation will affect the decision of investors in investing or withdrawing capital. In this study, a regression model is applied to GDP growth rate data to help investors understand the pattern of GDP growth in the future. One of the regression models that can be used is support vector regression with stochastic gradient descent optimization algorithm (SGD-SVR). The results show that the SGD-SVR model is able to be applied to GDP growth rate data in Indonesia. In the training process, the MSE resulted was 0.2805 with a total of 360 iterations. Meanwhile, the testing process resulted in an MSE of 0.0325.

Copyrights © 2023






Journal Info

Abbrev

equiva

Publisher

Subject

Computer Science & IT Mathematics

Description

Equiva Journal merupakan jurnal yang diterbitkan oleh Jurusan Matematika dan Teknologi Informasi - Institut Teknologi Kalimantan. Equiva Journal dirintis sejak Tahun 2022 dan terbit dua kali dalam setahun dengan setiap terbitan berisi 8 artikel. Semua artikel yang terbit di Equiva Journal adalah ...