Journal of Emerging Information Systems and Business Intelligence (JEISBI)
Vol. 3 No. 4 (2022)

Penerapan Metode Association Rule dengan Algoritma FP-Growth dan Prediksi dengan Artificial Neural Network untuk Persediaan Sparepart

Lumban Gaol, Gebryana Hotmida Lamtiar (Unknown)
Yustanti, Wiyli (Unknown)



Article Info

Publish Date
01 Aug 2022

Abstract

Untuk memaksimalkan pelayanan pada jumlah persediaan sparepart di perusahaan, maka diperlukan suatu teknik data mining dengan pemanfaatan data transaksi penjualan. Data transaksi pada Auto2000 Wiyung hanya digunakan untuk mengetahui keuntungan perusahaan, padahal data tersebut dapat dijadikan sebagai pengetahuan baru dalam menentukan persediaan. Pada penelitian ini data akan diolah dengan menggunakan metode association rule dan prediksi dengan Artificial Neural Network untuk menemukan pola pembelian dan memprediksi jumlah pembelian berdasarkan data transaksi penjualan sparepart. Dengan menerapkan metode Association Rule menggunakan algoritma Fp-Growth maka diperoleh 4 association rule dengan nilai confidence diatas 70%. Pola asosiasi yang diperoleh kemudian diprediksi dengan Artificial Neural Network menggunakan algoritma backpropagation. Percobaan trial error menggunakan perubahan hidden layer mulai dari 1-10 dengan lima jenis learning rate yaitu 0.01, 0.02, 0.001, 0.002, dan 0.003. Prediksi model ANN pada rule ke-1 menghasilkan MAPE sebesar 13.620% dan akurasi sebesar 86.38% dengan arsitektur 3-7-1, pada rule ke-2 menghasilkan MAPE sebesar 5.960% dan akurasi sebesar 94.04% dengan arsitektur 3-1-1, pada rule ke-3 menghasilkan MAPE sebesar 9.924% dan akurasi sebesar 90.076% dengan arsitektur 3-3-1, dan pada rule ke-4 menghasilkan MAPE sebesar 8.874% dan akurasi sebesar 91.126% dengan arsitektur 3-6-1.

Copyrights © 2022






Journal Info

Abbrev

JEISBI

Publisher

Subject

Computer Science & IT Decision Sciences, Operations Research & Management Languange, Linguistic, Communication & Media Library & Information Science

Description

Journal of Emerging Information Systems and Business Intelligence (JEISBI) aims to provide scholarly literature focused on studies and research in the fields of Information Systems (IS) and Business Intelligence (BI). This journal also includes public reviews on the development of theories, methods, ...