Geothermal ecosystems are defined by extreme environmental conditions, such as elevated temperatures, high concentrations of toxic chemicals, and fluctuations in abiotic stressors, which shape plant survival and adaptation. These unique ecosystems, found across various geothermal regions globally, support specialized plant communities that have developed distinctive morphological, physiological, and ecological adaptations. Indonesia, located on the Pacific Ring of Fire, is one of the world’s richest geothermal nations, offering an important yet underexplored context for studying vegetation in geothermal zones. This review examines the environmental conditions of geothermal ecosystems, the adaptive strategies of vegetation, and patterns of plant diversity within Indonesian geothermal fields. It also explores ecological succession, community dynamics, and the potential use of geothermal vegetation as environmental indicators for biomonitoring. Despite growing interest, significant research gaps remain, particularly in long-term monitoring and the integration of molecular-level studies. Addressing these gaps is essential for enhancing scientific understanding and informing conservation and sustainable geothermal energy development in tropical regions. This review highlights the ecological significance of geothermal vegetation and underscores the need for interdisciplinary research to support both biodiversity preservation and responsible energy exploitation.
Copyrights © 2025