Carbon capture and storage (CCS) is widely recognized as a significant technology in mitigating carbon dioxide (CO2) emissions from major industrial facilities, such as power plants and refineries. CCS involves the capture of concentrated CO2 streams from point sources, followed by subsequent safe and secure storage in appropriate geological reservoirs. We developed spatial database system using Geographic Information System (GIS) tools to facilitate source-sink matching between CO2 emitter and CO2 storage to foster the implementation of CCS/CCUS technologies in Indonesia. In this study, we proposed workflow approach to determine the location of CO2 sinks/storage candidates given limited data available. Additionally, this method spatially characterizes and represents probable clusters where opportunities for CCS/CCUS implementation are present. We consider the existing pipeline route and Right of Ways (ROW) to minimize the potential cost related to transportation of CO2 using pipeline. The priority of available storage is classified based on the storage capacity, distance, and other technical criteria to determine the optimal location of potential CO2 injection. We applied the workflow to Coal Fired Power Plant in West Java as the CO2 source, and we obtained 6 depleted fields that are connected to the existing ROW with CO2 storage capacity of 42.03 MMT.
                        
                        
                        
                        
                            
                                Copyrights © 2024