International Journal of Renewable Energy Development
Vol 14, No 3 (2025): May 2025

Economic-environmental analysis of solar-wind-biomass hybrid renewable energy system for hydrogen production: A case study in Vietnam

Nguyen, Huu Hieu (Unknown)
Bui, Van Ga (Unknown)
Le, Khac Binh (Unknown)
Nguyen, Van Trieu (Unknown)
Hoang, Anh Tuan (Unknown)



Article Info

Publish Date
01 May 2025

Abstract

Combining biomass with solar and wind energy to produce electricity and hydrogen, referred to as the Solar-Wind-Biomass Hybrid Renewable Energy System (SWB-HRES), provides optimal economic and environmental efficiency. This paper presents research findings from a case study of SWB-HRES implemented in Hoa Bac commune, Danang City, Vietnam, utilizing HOMER software for system modeling and optimization. The study aims to identify the optimal configuration for SWB-HRES with hydrogen production and assess its compatibility with grid-connected SWB-HRES without hydrogen production. A detailed analysis of greenhouse gas (GHG) emission reductions corresponding to different system configurations is also provided. The results indicate that the optimal SWB-HRES configuration for Hoa Bac includes a 15-kW solar panel, a 9-kW wind turbine, an 8.3 kW syngas generator, a 20-kW electrolyzer, a 24-kW converter, and a hydrogen storage tank with a capacity of 1 kg. This setup supports an annual electricity load of 7,300 kWh and produces 1,183 kilograms of hydrogen per year. For grid-connected HRES with hydrogen production, the solar-biomass system demonstrates superior economic and environmental efficiency compared to the wind-biomass configuration. The economic efficiency of SWB-HRES with hydrogen production matches that of SWB-HRES selling electricity to the grid when the hydrogen cost is $4.5/kg for discontinuous syngas generator operation and $5/kg for continuous operation. Furthermore, integrating biomass energy into HRES proves to be an effective strategy for GHG emission reduction. For the same electricity output of 62,863 kWh/year, the solar-wind HRES without hydrogen production achieves a GHG emission reduction of 33 tons of CO2-eq, while the solar-wind-biomass HRES with hydrogen production achieves a reduction of 217 tons of CO2-eq. Given that the performance of HRES depends on geographic location, equipment availability, and energy pricing, practical implementations should validate simulation results with experimental data collected on-site.

Copyrights © 2025






Journal Info

Abbrev

ijred

Publisher

Subject

Control & Systems Engineering Earth & Planetary Sciences Electrical & Electronics Engineering Energy Engineering

Description

The International Journal of Renewable Energy Development - (Int. J. Renew. Energy Dev.; p-ISSN: 2252-4940; e-ISSN:2716-4519) is an open access and peer-reviewed journal co-published by Center of Biomass and Renewable Energy (CBIORE) that aims to promote renewable energy researches and developments, ...