This study investigates public discourse on Indonesia's Free Nutritious Meals (Makan Bergizi Gratis/MBG) program through Latent Dirichlet Allocation (LDA) topic modeling of YouTube comments. Filling a research gap on online public opinion regarding the MBG policy, this study identifies dominant themes and discursive patterns in public perception. A three-topic model, validated through coherence score evaluation and pyLDAvis visualization, reveals key topics: concerns over food prices and distribution, perceived benefits for children and society, and emotionally and politically driven reactions. The findings provide valuable insights into public opinion, while also highlighting challenges in processing Indonesian-language text, such as informal language and noisy data. This study contributes to understanding public perceptions of social policies in digital environments and recommends future research directions, including improved text preprocessing and alternative topic modeling approaches. By shedding light on online public discourse, this research informs policymakers and stakeholders about the effectiveness and potential areas for improvement in the MBG program.
Copyrights © 2025