This research applies sentiment analysis to understand user perceptions of the Access by KAI application, especially specific aspects such as speed, payment process, and user interface (UI/UX). User reviews are collected and processed through preprocessing stages, balancing using the SMOTE method, and classified using three machine learning algorithms, namely Support Vector Machine (SVM), Decision Tree, and Logistic Regression. The SVM model achieved the highest accuracy of 89.33%, followed by Logistic Regression at 88%, and Decision Tree at 86.67%. Precision, recall, and F1-scores for each model were also evaluated, showing strong performance in detecting negative sentiments but lower performance for neutral and positive sentiments. In addition, keyword-based analysis revealed that negative sentiment was most commonly found in the aspects of the payment process and speed. WordCloud visualization also strengthens the results by showing the dominance of negative words in user reviews. The results of this study provide important suggestions and input for application developers to improve aspects of the service that are considered less satisfactory by users. Thus, this study can be used as a practical guide in making strategic decisions to improve the quality of service and user satisfaction of the Access by KAI application.
Copyrights © 2025