JURNAL TEKNIK INFORMATIKA DAN SISTEM INFORMASI
Vol 12 No 2 (2025): JATISI (Jurnal Teknik Informatika dan Sistem Informasi)

Studi Komparatif Teknik Cropping Urat Daun Jeruk dengan Metode Artificial Neural Network

irfani, muhammad haviz (Unknown)



Article Info

Publish Date
17 Jun 2025

Abstract

Citrus as a major agricultural commodity in Indonesia, plays a crucial role in the industry and farmers' income. Identification of citrus seedling types is a major challenge, due to the lack of knowledge and experience of farmers, causing potential financial and time losses. This study compares the Artificial Neural Network Backpropagation (JST-PB) method and Gray Level Co-occurrence Matrix (GLCM) features in orange seedling type identification through leaf vein images. Data was collected using a macro camera with Samsung ISOCELL GM2 sensor, with various cropping sizes on a total dataset of 1250 training images and 625 test images. The JST-BP method and GLCM features provided an accuracy rate of 91.2% at a cropping size of 200x200 piksels, 87.2% at a cropping size of 250x250 piksels, 90.4% at a cropping size of 300x300 piksels, 95.2% at a cropping size of 350x350 piksels, and the highest accuracy rate at a cropping size of 400x400 piksels, reaching 98.4%. The results of this study make an important contribution to the understanding of the identification of citrus seedling types through leaf vein images, highlighting the comparison between the JST-PB method and GLCM features at various image cropping sizes.

Copyrights © 2025






Journal Info

Abbrev

jatisi

Publisher

Subject

Computer Science & IT

Description

JATISI bekerja sama dengan IndoCEISS dalam pengelolaannya. IndoCEISS merupakan wadah bagi para ilmuwan, praktisi, pendidik, dan penggemar dalam bidang komputer, elektronika, dan instrumentasi yang menaruh minat untuk memajukan bidang tersebut di Indonesia. JATISI diterbitkan 2 kali dalam setahun ...