Penyakit Ginjal Kronis (PGK) terjadi ketika fungsi ginjal menurun secara bertahap selama lebih dari tiga bulan tanpa penyebab yang jelas. Penelitian ini bertujuan mengklasifikasikan PGK dengan menggunakan seleksi fitur Information Gain dan Learning Vector Quantization (LVQ). Dataset yang digunakan terdiri dari 1659 data dengan 53 atribut. Proses penelitian meliputi preprocessing data, penerapan SMOTE Oversampling, seleksi fitur Information Gain, dan penerapan model LVQ. Pengujian menghasilkan akurasi tertinggi sebesar 93,37% tanpa seleksi fitur, serta 36 fitur terpilih dengan threshold 0,3 setelah seleksi fitur. Learning rate digunakan antara 0,1 hingga 0,9, min learning rate 0,001, dan pengurangan alpha 0,1. Penggunaan SMOTE dan LVQ meningkatkan nilai presisi, recall, dan f1 score, tetapi akurasi menurun menjadi 84,59%. Hasil ini menunjukkan bahwa metode LVQ efektif dalam klasifikasi penyakit ginjal kronis, membantu ahli identifikasi penyakit ginjal kronis menggunakan data mining dan Jaringan Syaraf Tiruan.
Copyrights © 2025