Diabetic Retinopathic (DR) is one of the retinal disorders caused by high blood sugar levels. There are fewer ophthalmologists available, and treating DR patients manually is a time-consuming process. Therefore, there is a need for an automatic DR early detection method using Deep Learning. The purpose of this research is to build a web-based DR early detection prototype with retinal image classification using the DenseNet121 Deep Learning model and the Stochastic Gradient Descent (SGD) optimizer to improve the accessibility and efficiency of screening. The software development method used in this research is waterfall which consists of analysis phase, design phase, implementation phase, and testing phase. To ensure the prototype runs as planned, black-box testing is carried out on each of its features to ensure system functionality in accordance with predetermined specifications. This research produces a RD early detection prototype that has been tested with all 16 test cases and has a suitable status. Future research can be carried out further system development by involving real users such as ophthalmologists and can be applied in hospitals.
                        
                        
                        
                        
                            
                                Copyrights © 2025