Journal of Embedded Systems, Security and Intelligent Systems
Vol 6, No 2 (2025): June 2025

Performance Analysis of SVM In Emotion Classification: A Comparative Study Of TF-IDF and Countvectorizer

Fitriana, Frizka (Unknown)
Setiawan, Hendrik (Unknown)



Article Info

Publish Date
07 Jun 2025

Abstract

In today’s digital era, emotion analysis of social media comments plays a critical role in gaining deeper insights into user sentiment. This study aims to compare two text representation methods TF-IDF and CountVectorizer in enhancing the performance of the Support Vector Machine (SVM) algorithm for emotion classification. The dataset employed in this research is a subset of GoEmotions, consisting of 1,000 YouTube comments labeled with 27 distinct emotion categories. The dataset was split into training and testing sets with an 80:20 ratio. Both text representation methods were tested separately using a linear kernel in the SVM algorithm. The models were evaluated based on accuracy, precision, recall, and F1-score. The classification results show that TF-IDF slightly outperformed CountVectorizer in terms of accuracy (35% vs. 32%). However, CountVectorizer exhibited marginally better performance in precision and F1-score. These findings suggest that the choice of text representation significantly impacts emotion classification outcomes. This research contributes to the development of text-based emotion analysis systems for social media platforms.

Copyrights © 2025






Journal Info

Abbrev

JESSI

Publisher

Subject

Computer Science & IT

Description

The Journal of Embedded System Security and Intelligent System (JESSI), ISSN/e-ISSN 2745-925X/2722-273X covers all topics of technology in the field of embedded system, computer and network security, and intelligence system as well as innovative and productive ideas related to emerging technology ...