Computer Science and Information Technologies
Vol 6, No 2: July 2025

Bibliometric analysis and short survey in CT scan image segmentation: identifying ischemic stroke lesion areas

Taba Chabi, Wahabou K. (Unknown)
Ahouandjinou, Sèmèvo Arnaud R. M. (Unknown)
Kiki, Manhougbé Probus A. F. (Unknown)
Ametepe, Adoté François-Xavier (Unknown)



Article Info

Publish Date
01 Jul 2025

Abstract

Ischemic stroke remains one of the leading causes of mortality and long-term disability worldwide. Accurate segmentation of brain lesions plays a crucial role in ensuring reliable diagnosis and effective treatment planning, both of which are essential for improving clinical outcomes. This paper presents a bibliometric analysis and a concise review of medical image segmentation techniques applied to ischemic stroke lesions, with a focus on tomographic imaging data. A total of 2,014 publications from the Scopus database (2013–2023) were analyzed. Sixty key studies were selected for in-depth examination: 59.9% were journal articles, 29.9% were conference proceedings, and 4.7% were conference reviews. The year 2023 marked the highest volume of publications, representing 17% of the total. The most active countries in this area of research are China, the United States, and India. "Image segmentation" emerged as the most frequently used keyword. The top-performing studies predominantly used pre-trained deep learning models such as U-Net, ResNet, and various convolutional neural networks (CNNs), achieving high accuracy. Overall, the findings show that image segmentation has been widely adopted in stroke research for early detection of clinical signs and post-stroke evaluation, delivering promising outcomes. This study provides an up-to-date synthesis of impactful research, highlighting global trends and recent advancements in ischemic stroke medical image segmentation.

Copyrights © 2025






Journal Info

Abbrev

csit

Publisher

Subject

Computer Science & IT Engineering

Description

Computer Science and Information Technologies ISSN 2722-323X, e-ISSN 2722-3221 is an open access, peer-reviewed international journal that publish original research article, review papers, short communications that will have an immediate impact on the ongoing research in all areas of Computer ...