JOURNAL OF INFORMATICS AND TELECOMMUNICATION ENGINEERING
Vol. 8 No. 3Spc (2025): Special Issues 2025: Innovations in Predictive Analytics and Sentiment Analy

Mobilenetv2 Analysis in Classification Diseases On Mango Leaves

Simangunsong, Roy Candra (Unknown)
Muhathir (Unknown)



Article Info

Publish Date
28 May 2025

Abstract

This study aims to analyze the performance of the MobileNetV2 model in classifying diseases on mango leaves, consisting of three classes: capmodium, collectricu, and normal leaves. The dataset used contains 1500 images, with 80% allocated for training data, 10% for testing data, and 10% for validation data. The model was trained using a deep learning approach to identify mango leaf diseases based on the visual patterns present in each class. The results show that the MobileNetV2 model achieved an accuracy of 90%, a precision of 91%, a recall of 90%, and an F1-score of 89%. These findings highlight the potential of MobileNetV2 as an effective tool for automatically detecting mango leaf diseases. Therefore, this study is expected to contribute to the development of technology-based solutions in the agricultural sector, particularly in supporting farmers in identifying diseases quickly and accurately, thereby improving mango crop productivity.

Copyrights © 2025






Journal Info

Abbrev

jite

Publisher

Subject

Computer Science & IT Engineering

Description

JURNAL TEKNIK INFORMATIKA, JITE (Journal of Informatics and Telecommunication Engineering) is a journal that contains articles / publications and research results of scientific work related to the field of science of Informatics Engineering such as Software Engineering, Database, Data Mining, ...