Heart disease is one of the leading causes of death in Indonesia, so it is important to identify risk factors that contribute to the increasing incidence of heart disease. This study aims to classify risk factors for heart disease using the Decision Tree method with the CART (Classification and Regression Tree) algorithm at Rantauprapat Regional Hospital. The data used includes factors such as Age, High Blood Pressure, High Cholesterol Levels, Body Mass Index (BMI), Family History, Smoking, Unhealthy Diet, and Low Physical Activity. The results of the analysis show that the factors Age, High Blood Pressure, and High Cholesterol Levels have a significant effect on the increased risk of heart disease, with a model accuracy of 80%. Although this model successfully classifies high risk well, there are some errors in identifying low risk, as reflected in the Recall value (0.67).
Copyrights © 2024