Decision tree and forest methods have become popular approaches in data science and continue to evolve. One of these developments is the combination of decision trees with Generalized Linear Mixed Models (GLMM), resulting in the GLMM Tree, which is applicable to multilevel and longitudinal data. Another model, Generalized Mixed Effect Random Forest (GMERF), extends the concept of decision forests with GLMM, effectively handling complex data structures with non-linear interactions. This study compares the performance of GLMM Tree and GMERF models in classifying poor households in South Sulawesi Province, characterized by imbalanced categories. GLMM Tree provides a simple, interpretable classification through tree diagrams, while GMERF highlights variable importance. Initial tests show all three models (GLMM, GLMM Tree, and GMERF) achieve high accuracy and specificity but exhibit low sensitivity. By applying oversampling, sensitivity and AUC are significantly improved, though this is accompanied by a decline in accuracy and specificity, revealing a trade-off. The study concludes that while GLMM, GLMM Tree and GMERF have their strengths, using them together offers a more comprehensive understanding of poverty classification. Handling imbalanced data with oversampling is effective in increasing sensitivity, but careful consideration is needed due to its impact on overall accuracy.
Copyrights © 2025