Stroke is one of the leading causes of death and disability worldwide, making it essential to develop classification models that can assist in early and accurate diagnosis. This study aims to implement the Support Vector Machine (SVM) algorithm with three types of kernels linear, polynomial, and Radial Basis Function (RBF) to classify stroke disease data. The Adaptive Synthetic Sampling (ADASYN) method is employed to address the class imbalance problem, while model training and evaluation are carried out using 5-Fold Cross-Validation to ensure stable and reliable results. The findings indicate that ADASYN successfully improves the model’s sensitivity to stroke cases (the minority class), as reflected by an increase in recall and F1-score, despite a slight decrease in overall accuracy a common trade-off in handling imbalanced data. The linear kernel (after ADASYN) achieved the best performance after imbalance handling, with an average AUC-ROC of 0.8333, recall of 0.7827, and F1-score of 0.2181 for the stroke class. Although the F1-score remains relatively low, it improved compared to the pre-ADASYN results, indicating better detection of stroke cases. The implementation was conducted using Google Colab, which also contributed to efficient data processing and visualization. Overall, the results demonstrate that the combination of SVM and ADASYN is effective in enhancing the model’s sensitivity to minority classes and is well-suited for medical data classification tasks, particularly in the early diagnosis of stroke using machine learning approaches.
Copyrights © 2025