Sistemasi: Jurnal Sistem Informasi
Vol 14, No 4 (2025): Sistemasi: Jurnal Sistem Informasi

Liver Disease Classification using the NAIVE BAYES

Nurhalisa, Vitra (Unknown)
Fajri, Ika Nur (Unknown)



Article Info

Publish Date
11 Jul 2025

Abstract

The advancement of artificial intelligence technology presents new opportunities to support medical professionals in making faster and more accurate clinical decisions. This study introduces a liver disease classification system based on the Naive Bayes algorithm, designed to be easily interpretable by doctors and healthcare personnel. A dataset of 580 patients with 11 clinical attributes—ranging from bilirubin levels to albumin–globulin ratio—was used and processed through data cleaning and normalization stages. The Bernoulli Naive Bayes model was then trained and evaluated using a confusion matrix and ROC-AUC analysis. The results show an accuracy of 67%, with strong performance in identifying patients at risk of liver disease (recall of 0.82), but weaker in classifying healthy individuals (recall of 0.28). The fast training time and transparent probabilistic predictions of the Naive Bayes algorithm make it a practical solution for developing a prototype of a medical decision support system. Future recommendations include incorporating additional relevant clinical features and applying ensemble methods to improve diagnostic sensitivity and specificity.

Copyrights © 2025






Journal Info

Abbrev

stmsi

Publisher

Subject

Computer Science & IT Electrical & Electronics Engineering

Description

Sistemasi adalah nama terbitan jurnal ilmiah dalam bidang ilmu sains komputer program studi Sistem Informasi Universitas Islam Indragiri, Tembilahan Riau. Jurnal Sistemasi Terbit 3x setahun yaitu bulan Januari, Mei dan September,Focus dan Scope Umum dari Sistemasi yaitu Bidang Sistem Informasi, ...