Sistemasi: Jurnal Sistem Informasi
Vol 14, No 5 (2025): Sistemasi: Jurnal Sistem Informasi

Deep Learning Approach for Music Genre Classification using Multi-Feature Audio Representations

Asanah, Nurul (Unknown)
Pratama, Irfan (Unknown)



Article Info

Publish Date
01 Sep 2025

Abstract

Automatic music genre classification is critical for enhancing user experience in streaming platforms and recommendation systems. This study proposes a Convolutional Neural Network (CNN)-based approach using the GTZAN dataset, which contains ten music genres. The original 30-second audio tracks were segmented into overlapping 3-second chunks, then preprocessed and converted into three feature representations: Mel-Spectrogram, Chroma, and Spectral Contrast. CNN model consisting of four convolutional layers with increasing filters (32–256). The model was trained over 13 epochs using the Adam optimizer. The proposed model achieved 91% accuracy, outperforming previous approaches based on single-feature extraction. The integration of diverse spectral and harmonic features enabled the model to better distinguish between similar genres and improved its generalization. This method offers practical value for real-time music classification, automatic tagging, and intelligent audio indexing in music streaming services and digital libraries.

Copyrights © 2025






Journal Info

Abbrev

stmsi

Publisher

Subject

Computer Science & IT Electrical & Electronics Engineering

Description

Sistemasi adalah nama terbitan jurnal ilmiah dalam bidang ilmu sains komputer program studi Sistem Informasi Universitas Islam Indragiri, Tembilahan Riau. Jurnal Sistemasi Terbit 3x setahun yaitu bulan Januari, Mei dan September,Focus dan Scope Umum dari Sistemasi yaitu Bidang Sistem Informasi, ...