Jurnal Tekinkom (Teknik Informasi dan Komputer)
Vol 8 No 1 (2025)

PENERAPAN K-MEANS CLUSTERING UNTUK SEGMENTASI WILAYAH BERDASARKAN JUMLAH KEJADIAN BENCANA ALAM DI SUMATERA UTARA

Manalu, Christ Natamaro Anastasius (Unknown)
Pasaribu, Yuni Rumyanti (Unknown)
Malika, Salsa (Unknown)
Tamba, Saut Parsaoran (Unknown)



Article Info

Publish Date
30 Jun 2025

Abstract

North Sumatra is a disaster-prone province in Indonesia, frequently affected by floods, landslides, and extreme weather events. This study employs the K-Means Clustering algorithm to classify 33 districts/cities in North Sumatra based on disaster frequency. The results reveal three distinct clusters: Cluster 0 (low risk), Cluster 1 (high flood and extreme disaster risk), and Cluster 2 (high landslide risk). Model validation using a silhouette coefficient of 0.63 and the elbow method confirms the reliability of the clustering. These findings provide a scientific basis for region-specific disaster mitigation strategies, emphasizing infrastructure development for flood-prone areas and slope stabilization for landslide-prone zones. Future research should incorporate socioeconomic factors and temporal analysis to enhance disaster risk assessment.

Copyrights © 2025






Journal Info

Abbrev

Tekinkom

Publisher

Subject

Computer Science & IT

Description

Jurnal TEKINKOM merupakan jurnal yang dimaksudkan sebagai media terbitan kajian ilmiah hasil penelitian, pemikiran dan kajian analisis-kritis mengenai isu Ilmu - ilmu komputer dan sistem informasi, seperti : Pemrograman Jaringan, Jaringan Komputer, Teknik Komputer, Ilmu Komputer/Informatika, Sistem ...