Minyak bumi berperan besar dalam perekonomian global karena hasil olahannya sering digunakan dalam kehidupan sehari hari. Harga minyak dunia dapat naik turun tergantung tingginya permintaan global dan kebijakan yang dikeluarkan Organization of the Petroleum Exporting Countries (OPEC). Jika harga minyak naik maka dapat menimbulkan inflansi dan menurunkan daya beli konsumen. Sebaliknya, harga minyak yang turun dapat merugikan negara produsen minyak dan industri pengelola minyak. Oleh sebab itu, prediksi terhadap harga minyak mentah dunia menjadi penting sebagai upaya untuk mengelola volatilitas pasar dan dampaknya terhadap ekonomi global. Penelitian ini dilakukan untuk memprediksi harga minyak dunia mengunakan Support Vector Regression (SVR) dengan metode optimasi Genetic Algorithm (GA), Particle Swarm Optimization (PSO), dan Grid Search (GS) untuk mendapatkan parameter optimal. Data yang digunakan adalah OPEC Basket Price harian periode 2003 – 2023. Analisis SVR dilakukan menggunakan kernel linear, polynomial, dan Radial Basis Function (RBF), dimana kernel terbaik selanjutnya akan dioptimasi sehingga dihasilkan parameter cost (C), gamma (γ), dan epsilon (ε) yang optimal berdasar nilai RMSE yang terkecil. Hasil penelitian diperoleh bahwa kernel RBF merupakan yang terbaik dengan RMSE sebesar 2,120208 dengan nilai parameter C sebesar 1, γ sebesar 0,0001, dan ε sebesar 0,0001. Dari optimasi yang telah dilakukan diperoleh hasil bahwa metode SVR-GA memiki RMSE terkecil yaitu sebesar 2,119924 dengan nilai parameter C sebesar 0,9314789, γ sebesar 0,00008454813, dan ε sebesar 0,00006456384. Meski tidak terlalu signifikan, metode optimasi Genetic Algorithm mampu mengoptimasi parameter SVR kernel RBF pada prediksi harga minyak mentah dunia.
Copyrights © 2025