Deteksi berita palsu dalam bahasa Indonesia masih menjadi tantangan dalam pemrosesan bahasa alami (NLP). Penelitian ini membandingkan enam metode: RoBERTa, BERT, IndoBERT, SVM, LSTM, dan CNN dalam mengidentifikasi berita palsu. Dataset yang digunakan telah melalui proses pembersihan dan tokenisasi sebelum diterapkan pada masing-masing model. Penelitian ini memberikan analisis komprehensif terhadap keunggulan model Transformer dibandingkan dengan metode klasik seperti SVM, CNN, dan LSTM. Selain itu, penelitian ini juga menegaskan bahwa model yang dilatih khusus untuk bahasa Indonesia, seperti IndoBERT, memiliki performa lebih baik dibandingkan BERT standar. Hasil evaluasi menunjukkan bahwa model berbasis Transformer memiliki performa terbaik, dengan RoBERTa sebagai model paling akurat. Temuan ini dapat menjadi referensi bagi pengembangan sistem deteksi berita palsu yang lebih akurat dan efisien dalam bahasa Indonesia. Akurasi yang diperoleh dari masing-masing model adalah sebagai berikut: RoBERTa (99,5%), IndoBERT (98,6%), BERT (98,2%), SVM (95,9%), CNN (93,9%), dan LSTM (92,3%).
Copyrights © 2025