JURTEKSI
Vol 11, No 3 (2025): Juni 2025

PREDICTING LOAN ELIGIBILITY WITH SUPPORT VECTOR MACHINE: A MACHINE LEARNING APPROACH

Rajunaidi, Rajunaidi (Unknown)
Yuliansyah, Herman (Unknown)
Sunardi, Sunardi (Unknown)
Murinto, Murinto (Unknown)



Article Info

Publish Date
29 Jun 2025

Abstract

Abstract: Non-performing loans remain one of the main challenges faced by cooperatives, particularly when the loan eligibility assessment process is still conducted manually. This traditional approach tends to be time consuming, subjective, and prone to inaccurate decisions. This study aims to develop a predictive model for borrower eligibility using the Support Vector Machine (SVM) algorithm as a more efficient and objective machine learning-based solution. A total of 1,000 loan history records were processed using RapidMiner software, taking into account variables such as salary, years of employment, loan amount, monthly installment, employment status, monthly expenses, number of dependents, housing status, age, and collateral value. The model’s performance was evaluated using a confusion matrix and classification metrics including accuracy, precision, recall, and kappa. The results indicate that the SVM model achieved an accuracy of 90.05%, precision of 90.13%, recall of 90.05%, and f1 score of 90,08%, reflecting a strong performance in classifying borrower eligibility. The application of this method makes a significant contribution to the development of data driven decision support systems within cooperative environments. This finding expands the scientific understanding in the field of microfinance and supports the implementation of artificial intelligence technologies in making decisions that are more precise, rapid, and accurate.Keywords: cooperative; eligibility prediction; machine learning; non-performing loan; SVMAbstrak: Kredit macet merupakan salah satu permasalahan utama yang dihadapi koperasi, terutama ketika proses penilaian kelayakan peminjam masih dilakukan secara manual. Pendekatan ini cenderung lambat, subjektif, dan berisiko menghasilkan keputusan yang kurang akurat. Penelitian ini bertujuan untuk membangun model prediksi kelayakan peminjam menggunakan algoritma Support Vector Machine (SVM) sebagai solusi berbasis machine learning yang lebih efisien dan objektif. Sebanyak 1.000 data riwayat pinjaman diolah menggunakan tools RapidMiner dengan mempertimbangkan variabel: gaji, lama bekerja, besar pinjaman, angsuran per bulan, status pegawai, pengeluaran bulanan, jumlah tanggungan, status rumah, umur, dan nilai jaminan. Evaluasi model dilakukan menggunakan confusion matrix dan metrik klasifikasi seperti akurasi, presisi, recall, dan kappa. Hasil menunjukkan bahwa model SVM mencapai akurasi  90,05%, presisi 90,13%, recall 90,05%, dan f1 score 90,08%, yang mencerminkan performa model yang sangat baik dalam mengklasifikasikan kelayakan peminjam. Penerapan metode ini memberikan kontribusi penting dalam pengembangan sistem pendukung keputusan berbasis data di lingkungan koperasi. Temuan ini memperluas wawasan keilmuan di bidang keuangan mikro dan mendukung penerapan teknologi kecerdasan buatan dalam pengambilan keputusan yang lebih tepat, cepat, dan akurat.Kata Kunci: koperasi; kredit macet; machine learning; prediksi kelayakan; SVM  

Copyrights © 2025






Journal Info

Abbrev

jurteksi

Publisher

Subject

Computer Science & IT

Description

JURTEKSI (Jurnal Teknologi dan Sistem Informasi) is a scientific journal which is published by STMIK Royal Kisaran. This journal published twice a year on December and June. This journal contains a collection of research in information technology and computer ...