In spatial data analysis, interpolation is used to estimate values at unobserved locations, but often faces challenges in capturing complex spatial patterns and estimation uncertainty. One of the main obstacles is the small sample size, which makes the empirical variogram difficult to define well in conventional Kriging methods. The Bayesian Kriging approach overcomes this problem by integrating prior information, so it can still produce stable estimates despite limited data. This study is a quantitative, spatial-based research aimed at interpolating monthly rainfall in East Java Province using the Bayesian Kriging approach. The data consist of monthly rainfall measurements from 11 rain gauge stations distributed across East Java, obtained from the Indonesian Agency for Meteorology, Climatology, and Geophysics (BMKG) for the period of January to April 2024. The entire analysis was conducted using R software. A spherical semivariogram model was selected due to its superior fit to the spatial characteristics of the rainfall data in the study area with the smallest RMSE 37.17. This study demonstrates the effectiveness of Bayesian Kriging for rainfall interpolation in tropical regions with sparse data, providing more stable and accurate estimates compared to conventional methods. The scientific contribution of this research lies in showcasing how the integration of informative priors and Bayesian inference enhances interpolation accuracy in data-limited tropical environments. The resulting interpolated maps can inform land-use planning and flood risk mitigation by identifying areas of high rainfall for improved water infrastructure and lower-rainfall regions for targeted irrigation planning. 
                        
                        
                        
                        
                            
                                Copyrights © 2025