Sinergi
Vol 29, No 2 (2025)

Reduced graphene oxide-ZnO hollow microsphere composite for supercapacitor applications

Abdullah, Abqari Luthfi Albert (Unknown)
Radiman, Shahidan (Unknown)
Chiu, Wee Siong (Unknown)
Abdul Hamid, Muhammad Azmi (Unknown)
Badrudin, Fadhlul Wafi (Unknown)



Article Info

Publish Date
22 May 2025

Abstract

Through a facile solvothermal synthesis process, a reduced graphene oxide-ZnO microsphere composite was produced at 180 °C for 24 hours. Raman spectroscopy, X-ray diffraction, field emission scanning electron microscopy, and transmission electron microscopy were used to analyze the morphological structures of the material. The analysis revealed that hexagonal phase wurtzite ZnO nanoparticles assembled homogeneous microspheres, decorated on the graphene sheets by graphene oxide functional groups. The ZnO nanoparticles are about 30 nm in size and the microspheres are hollow. A possible growth mechanism for the formation of ZnO hollow microspheres anchored on graphene sheets has been proposed. Cyclic voltammetry, galvanostatic charge-discharge and electrochemical impedance were used to evaluate the electrochemical performance of the composite. At a scan rate of 1 mV/s, the reduced graphene oxide-ZnO hollow microsphere composite electrode demonstrated an enhanced specific capacitance of 40.70 F/g with energy and power densities of 5.75 Wh/kg and 1.97 kW/kg, respectively.

Copyrights © 2025






Journal Info

Abbrev

sinergi

Publisher

Subject

Civil Engineering, Building, Construction & Architecture Control & Systems Engineering Electrical & Electronics Engineering Engineering Industrial & Manufacturing Engineering

Description

SINERGI is a peer-reviewed international journal published three times a year in February, June, and October. The journal is published by Faculty of Engineering, Universitas Mercu Buana. Each publication contains articles comprising high quality theoretical and empirical original research papers, ...