Digital technology has greatly improved teledentistry by facilitating telediagnostics and teleconsultations, particularly benefiting those in remote areas. Additionally, AI advancements enhance diagnostic accuracy and streamline clinical decision-making, reducing costs and resource disparities in dental care. This study presents an improved U-Net architecture, Deformable U-Net (DU-Net), for semantic dental caries segmentation, leveraging deformable convolutions to dynamically adjust sampling points for improved feature extraction and reduced computational redundancy. By connecting encoder-decoder blocks via skip-connections, the DU-Net architecture enables efficient real-time segmentation and balance accuracy while reducing computational demands. The deformable block in DU-Net and DDR U-Net shows a balanced performance and efficiency while maintaining accuracy despite reduced FLOPs. The proposed architecture was implemented in real-time dental caries segmentation on a Dual Core Cortex A72 system and web server. It shows a significant improvement in Dice score, reducing CPU and memory usage compared to conventional U-Net models. Moreover, the DU-Net and its half variants achieved competitive performance with much lower computational demands makes suitable for web servers and embedded applications. The result highlights the DU-Net capability to optimize both computational efficiency and segmentation accuracy, offering a promising solution for real-world applications where speed and resource management are critical, particularly in the medical imaging field.
Copyrights © 2025