Jurnal Sisfokom (Sistem Informasi dan Komputer)
Vol. 13 No. 3 (2024): NOVEMBER

Application of Data Mining for Tuberculosis Disease Classification Using K-Nearest Neighbor

Sitanggang, Delima (Unknown)
Simangunsong, lamria (Unknown)
Sundah, Geertruida Frederika (Unknown)
Hutahaean, Rani (Unknown)
Indren, Indren (Unknown)



Article Info

Publish Date
13 Nov 2024

Abstract

This study aims to find out how much the application of the K-NN method and the accuracy value obtained by the K-NN method in clarifying data of Tuberculosis patients. This research focuses on improving public health and developing science to help people prevent and overcome tuberculosis. This type of research is quantitative. The literature study used is the documentation study. The method used by the K-Nearest Neighbor Algorithm. The results of the study showed that the process of applying data mining for the classification of tuberculosis disease using the K-Nearest Neighbor method obtained a final result of 80% accuracy. Thus, it can be concluded that the K-Nearest Neighbor algorithm is good.

Copyrights © 2024






Journal Info

Abbrev

sisfokom

Publisher

Subject

Computer Science & IT Control & Systems Engineering Decision Sciences, Operations Research & Management

Description

Jurnal Sisfokom merupakan singkatan dari Jurnal Sistem Informasi dan Komputer. Jurnal ini merupakan kolaborasi antara sivitas akademika STMIK Atma Luhur dengan perguruan tinggi maupun universitas di Indonesia. Jurnal ini berisi artikel ilmiah dari peneliti, akademisi, serta para pemerhati TI. Jurnal ...