In the current digital era, e-commerce has become the backbone of Indonesia's digital economy, which is experiencing rapid growth. However, competition in this industry is becoming increasingly fierce, indicating the importance of predicting the number of website visitors for an effective marketing strategy. Quantum Perceptron, the latest quantum computing innovation, promises a more accurate and efficient approach compared to conventional methods such as classical Perceptron. This research proposes the use of Quantum Perceptron to predict the number of visitors on large e-commerce platforms in Indonesia. The data used in the research is data on the number of e-commerce visitors obtained from the katadata.com website. Data from Shopee, Tokopedia, Lazada, Blibli, and Bukalapak were used to analyze and compare predictions with classical perceptron methods, showing the significant potential of Quantum Perceptron in supporting the development of more efficient business strategies. The research results show that the Quantum Perceptron algorithm can make predictions very well compared to the classical perceptron, proven by the Quantum Perceptron having a perfect accuracy of 100% with a total of 2 epochs while the classical perceptron has 100% accuracy with a total of 10 epochs. Quantum perceptron has better performance and shorter time, this can be seen from the smaller number of epochs.
Copyrights © 2025