International Journal of Electrical and Computer Engineering
Vol 15, No 3: June 2025

A hybrid adaptive neuro-fuzzy inference system and reptile search algorithm model for wind power forecasting

Al-Widyan, Mohamad I. (Unknown)
Abualigah, Laith (Unknown)
Jaradat, Ghaith M. (Unknown)
Alsmadi, Mutasem Khalil (Unknown)



Article Info

Publish Date
01 Jun 2025

Abstract

Estimating the number of wind ranches generated in the upcoming minutes, hours, or days is the focus of wind power forecasting. Deep learning has garnered a lot of interest in wind control estimation because of how well they perform classification, grouping, and recurrence. The adaptive neuro-fuzzy inference system was successfully applied in wind power forecasting. However, its performance relies on optimal selection of hyperparameters. This study introduces a novel predictive model by incorporating the reptile search algorithm with adaptive neuro-fuzzy inference system (ANFIS) for short-term wind power forecasting. It employs reptile search algorithm (RSA), known for adjustable parameters, disentangled search, and consistent outcomes, to optimize ANFIS’s hyperparameters. Additionally, via exploitation during training, RSA performs a selection of best features in the dataset that contributes to the classification accuracy of ANFIS. This aims to enhance precision of the anticipated yield. Employing authentic wind power data from Jordan is undertaken to evaluate efficiency. The performance is compared with alternative techniques, including artificial neural networks, random forests, and support vector machines. Findings showed that ANFIS-RSA performs competitively for the well-known Chinese benchmark dataset (99.9% accuracy; 0.99 R2; 10.54 MAE; 11.62 RMSE) and is more robustly accurate than others over the Jordanian dataset (0.84.6% accuracy; 0.96 R2; 0.098 MAE; 0.203 RMSE).

Copyrights © 2025






Journal Info

Abbrev

IJECE

Publisher

Subject

Computer Science & IT Electrical & Electronics Engineering

Description

International Journal of Electrical and Computer Engineering (IJECE, ISSN: 2088-8708, a SCOPUS indexed Journal, SNIP: 1.001; SJR: 0.296; CiteScore: 0.99; SJR & CiteScore Q2 on both of the Electrical & Electronics Engineering, and Computer Science) is the official publication of the Institute of ...