Diabetes is a metabolic disorder that occurs when the pancreas is unable to produce adequate amounts of insulin or the body has difficulty in utilizing it optimally. This condition has the potential to cause various health complications. Therefore, early diagnosis of diabetes is very important to reduce the mortality rate due to these complications. Backpropagation Neural Network (BPNN) is an approach in Artificial Neural Network (ANN) that is commonly applied for disease classification, including diabetes. However, the BPNN method has drawbacks, namely its slow convergence rate and the possibility of getting stuck at a local minimum due to random weight initialization. To overcome these problems, this study applies the Nguyen-Widrow weight initialization method to improve the performance of BPNN in diabetes classification. The data source in this study comes from Kaggle, consisting of 768 data with 8 parameters. Model testing was conducted using k-fold cross-validation with K=10, and exploring various numbers of neurons in the hidden layer and learning rate (lr). The results showed that weight initialization using the Nguyen-Widrow method improved the accuracy of BPNN compared to random weight initialization. The best model was obtained with lr 0.001 and 15 neurons in the hidden layer, resulting in an accuracy of 91.23%, higher than the random weight initialization which only reached 89.91%. Thus, the Nguyen-Widrow method is proven effective in improving the performance of BPNN for diabetes classification.Diabetes merupakan gangguan metabolik yang terjadi ketika pankreas tidak mampu menghasilkan insulin dalam jumlah yang memadai atau tubuh mengalami kesulitan dalam memanfaatkannya secara optimal. Kondisi ini berpotensi menimbulkan beragam komplikasi kesehatan. Oleh karena itu, diagnosis dini penyakit diabetes sangat penting untuk menekan angka kematian akibat komplikasi tersebut. Backpropagation Neural Network (BPNN) adalah pendekatan dalam Jaringan Syaraf Tiruan (JST) yang umum diterapkan untuk klasifikasi penyakit, termasuk diabetes. Namun, metode BPNN memiliki kekurangan, yaitu laju konvergensinya yang lambat dan kemungkinan terjebak pada minimum lokal akibat inisialisasi bobot yang dilakukan secara random. Untuk mengatasi permasalahan tersebut, penelitian ini menerapkan metode inisialisasi bobot Nguyen-Widrow guna meningkatkan performa BPNN dalam klasifikasi diabetes. Sumber data dalam penelitian ini berasal dari Kaggle, terdiri dari 768 data dengan 8 parameter. Pengujian model dilakukan menggunakan k-fold cross-validation dengan K=10, serta mengeksplorasi berbagai jumlah neuron dalam hidden layer dan learning rate (lr). Hasil penelitian menunjukkan bahwa inisialisasi bobot menggunakan metode Nguyen-Widrow meningkatkan akurasi BPNN dibandingkan dengan inisialisasi bobot random. Model terbaik diperoleh dengan lr 0,001 dan 15 neuron pada hidden layer, menghasilkan akurasi sebesar 91,23%, lebih tinggi dibandingkan inisialisasi bobot random yang hanya mencapai 89,91%. Dengan demikian, metode Nguyen-Widrow terbukti efektif dalam meningkatkan performa BPNN untuk klasifikasi diabetes.
Copyrights © 2025