METIK JURNAL
Vol. 9 No. 1 (2025): METIK Jurnal

Analisis Perbandingan Silhouette dengan Elbow pada Algoritma K-Means dan DBSCAN

Khairani Ritonga, Putri (Unknown)
Siddik Hasibuan, Muhammad (Unknown)



Article Info

Publish Date
19 Jun 2025

Abstract

This study aims to apply clustering methods using the K-Means and DBSCAN algorithms to group community data based on parameters such as income, housing condition, occupation, number of dependents, and health status. To determine the optimal number of clusters in the K-Means algorithm, the Elbow and Silhouette methods were employed. The research utilized Python and Google Colaboratory as data analysis tools. The clustering results showed that the DBSCAN algorithm was more effective in identifying homogeneous community groups without the need to predefine the number of clusters, while K-Means produced more structured results but relied on a predetermined cluster count. This research is expected to aid in more accurate and efficient decision-making for community data grouping.

Copyrights © 2025






Journal Info

Abbrev

metik

Publisher

Subject

Computer Science & IT Control & Systems Engineering Decision Sciences, Operations Research & Management Earth & Planetary Sciences Electrical & Electronics Engineering

Description

Media Teknologi Informasi dan Komputer (METIK) Jurnal adalah jurnal teknologi dan informasi nasional berisi artikel-artikel ilmiah yang meliputi bidang-bidang: sistem informasi, informatika, multimedia, jaringan serta penelitian-penelitian lain yang terkait dengan bidang-bidang tersebut. Terbit dua ...