International Journal of Reconfigurable and Embedded Systems (IJRES)
Vol 14, No 2: July 2025

Building a photonic neural network based on multi-operand multimode interference ring resonators

Do, Thanh Tien (Unknown)
Pham, Hai Yen (Unknown)
Thanh, Trung (Unknown)



Article Info

Publish Date
01 Jul 2025

Abstract

Photonic neural networks (PNNs) offer significant potential for enhancing deep learning networks, providing high-speed processing and low energy consumption. In this paper, we present a novel PNN architecture that employs nonlinear optical neurons using multi-operand 4×4 multimode interference (MMI) multi-operand ring resonators (MORRs) to efficiently perform vector dot-product calculations. This design is integrated into a photonic convolutional neural network (PCNN) with two convolutional layers and one fully connected layer. Simulation experiments, conducted using Lumerical and Ansys tools, demonstrated that the model achieved a high test accuracy of 98.26% on the MNIST dataset, with test losses stabilizing at approximately 0.04%. The proposed model was evaluated, demonstrating high computation speed, improved accuracy, low signal loss, and scalability. These findings highlight the model’s potential for advancing deep learning applications with more efficient hardware implementations.

Copyrights © 2025






Journal Info

Abbrev

IJRES

Publisher

Subject

Economics, Econometrics & Finance

Description

The centre of gravity of the computer industry is now moving from personal computing into embedded computing with the advent of VLSI system level integration and reconfigurable core in system-on-chip (SoC). Reconfigurable and Embedded systems are increasingly becoming a key technological component ...