JIKSI (Jurnal Ilmu Komputer dan Sistem Informasi)
Vol. 13 No. 2 (2025): Jurnal Ilmu Komputer dan Sistem Informasi

PERBANDINGAN KINERJA KNN, SVM, DAN ANN UNTUK MEMPREDIKSI LEVEL OBESITAS

Georgia Sugisandhea (Unknown)
Teny Handhayani (Unknown)



Article Info

Publish Date
07 Jul 2025

Abstract

This study aims to compare the performance of K-Nearest Neighbors (KNN), Artificial Neural Network (ANN), and Support Vector Machines (SVM), classification methods to find the best suited method to train a machine to classify someone to their group of obesity levels according to their eating habits and physical condition. This experiment uses the “Estimation of Obesity Levels based on Eating Habits and Physical Condition” dataset. The primary focus is on achieving high accuracy score and complex decision boundaries handling without minding the long training times, considering misclassification in the medical field might cause fatal consequences. This experiment’s result shows that the SVM classification method with linear kernel provides the best overall performance for classifying obesity level, with the average accuracy of 0.944, precision of 0.944, recall of 0.942, and f1-score of 0.942. Notably, with the help of C kernel parameter of 200, the model teaches near-perfect performance evaluation scores that has the result of 0.99 score in accuracy, precision, recall, and f1-score.

Copyrights © 2025






Journal Info

Abbrev

jiksi

Publisher

Subject

Computer Science & IT Mathematics Other

Description

Jurnal Ilmu Komputer dan Sistem Informasi (JIKSI) diterbitkan oleh Fakultas Teknologi Informasi Universitas Tarumanagara (FTI Untar) Jakarta sebagai media publikasi karya ilmiah mahasiswa program studi Teknik Informatika dan Sistem Informasi FTI Untar. Karya-karya ilmiah yang dihasilkan berupa hasil ...