Incident management is one of the critical processes in Information Technology service management that aims to manage disruptions and minimize the impact of unexpected incidents on business services. This study applies the K-Means algorithm to cluster IT service incidents, aiming to enhance company operational efficiency. Utilizing a dataset from the UCI Machine Learning Repository comprising 141,712 events related to 24,918 incidents, this research analyzes incident patterns and characteristics for optimized handling. The data was analyzed through a series of preprocessing stages, and the elbow and silhouette methods were used to determine the optimal number of clusters. From the results, it was successfully grouped into 4 (four) clusters with a distortion score value of 964264294.569 and 0.52 silhouette score based on incident characteristics, such as urgency, priority, and number of reassignments. From this, the clustering results show that the K-Means algorithm effectively identifies incidents that require further handling, such as those with high urgency and priority, as well as helping the company focus resources to resolve incidents that have the most impact on the business sector. This research provides a data-driven solution to improve incident management and Service Level Agreement (SLA) fulfillment, while offering a framework for more effective and efficient IT incident analysis and resource allocation.
                        
                        
                        
                        
                            
                                Copyrights © 2025