Prosiding Seminar Nasional Teknik Elektro, Sistem Informasi, dan Teknik Informatika (SNESTIK)
2025: SNESTIK V

Klasifikasi Bangunan secara Otomatis Menggunakan Pembelajaran Mendalam dari Gambar Street-View

Abdullah, Ryan Gading (Unknown)
A., M. Mahameru (Unknown)
Rewina, Anggita Eka (Unknown)
Kurniawan, Muhammad Andhika (Unknown)
Hapsari, Dian Puspita (Unknown)



Article Info

Publish Date
24 Jun 2025

Abstract

Urban population density mapping or urban utility planning requires a classification map based on individual buildings that are considered much more informative. The goal of this research is to determine how to extract the fine-grained boundaries of individual buildings from a street-view dataset. This paper proposes a general framework for classifying individual building functionality using a deep learning approach. The proposed method is based on a Convolutional Neural Network (CNN) that classifies facade structures from street view images, such as Street-View images. From the experiments conducted, the CNN classifier with the ResNet architecture was able to classify the Street-View data group with an accuracy value of 86.79%. We construct a dataset to train and evaluate the CNN classifier. Furthermore, the method is applied to generate a building classification map at the urban area scale.

Copyrights © 2025






Journal Info

Abbrev

snestik

Publisher

Subject

Computer Science & IT Electrical & Electronics Engineering

Description

Prosiding Seminar Nasional Teknik Elektro, Sistem Informasi, dan Teknik Informatika (SNESTIK) merupakan media publikasi atas makalah yang telah dikirimkan pada kegiatan seminar. Prosiding ini diterbitkan secara daring (media online) oleh Institut Teknologi Adhi Tama Surabaya setiap tahun mengiringi ...