JISKa (Jurnal Informatika Sunan Kalijaga)
Vol. 10 No. 2 (2025): May 2025

Algoritma Random Forest dan Synthetic Minority Oversampling Technique (SMOTE) untuk Deteksi Diabetes

Nurussakinah, Nurussakinah (Unknown)
Faisal, Muhammad (Unknown)
Santoso, Irwan Budi (Unknown)



Article Info

Publish Date
31 May 2025

Abstract

Diabetes is one of the challenges in global health. Indonesia ranks 5th in the world with the highest rate of diabetes. This research uses the Random Forest algorithm for diabetes detection. The purpose of this study is to detect diabetes using the Random Forest algorithm, which provides accurate and efficient results in the early diagnosis of diabetic patients. The data used is secondary data, specifically the “Diabetes Dataset,” which consists of 952 data points and has 17 features. The test scenario in this study divides the data into three parts, namely scenario 1 (90:10 ratio), scenario 2 (70:30 ratio), and scenario 3 (50:50 ratio). In each scenario, a comparison is made between using SMOTE and not using it. The best performance results are obtained in scenario 1, which uses SMOTE, producing 97% accuracy, 100% precision, 94% recall, and an F1-score of 97%.

Copyrights © 2025






Journal Info

Abbrev

JISKA

Publisher

Subject

Computer Science & IT Electrical & Electronics Engineering Library & Information Science

Description

JISKa (Jurnal Informatika Sunan Kalijaga) adalah jurnal yang mencoba untuk mempelajari dan mengembangkan konsep Integrasi dan Interkoneksi Agama dan Informatika yang diterbitkan oleh Departemen Teknik Informasi UIN Sunan Kalijaga Yogyakarta. JISKa menyediakan forum bagi para dosen, peneliti, ...